complete theory - определение. Что такое complete theory
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое complete theory - определение

Maximal consistent set
Найдено результатов: 5468
complete theory         
<logic> An abstract logical theory in which all true statements have formal proofs within the theory. (1998-07-05)
Complete theory         
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its negation but not both (that is, either T \vdash \varphi or T \vdash \neg \varphi).
Model complete theory         
In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding.
complete graph         
SIMPLE UNDIRECTED GRAPH IN WHICH EVERY PAIR OF DISTINCT VERTICES IS CONNECTED BY A UNIQUE EDGE
Full graph; Complete Digraph; Complete digraph; K n; Tetrahedral Graph; Complete graphs
A graph which has a link between every pair of nodes. A complete bipartite graph can be partitioned into two subsets of nodes such that each node is joined to every node in the other subset. (1995-01-24)
Complete (complexity)         
NOTION OF THE "HARDEST" OR "MOST GENERAL" PROBLEM IN A COMPLEXITY CLASS
Complete problem; Hard (complexity)
In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.
♯P-complete         
COMPLEXITY CLASS
Sharp-P-Complete; Sharp P complete; Number-P hard; Number-P-complete; Sharp-P hard; Sharp-P-complete
The #P-complete problems (pronounced "sharp P complete" or "number P complete") form a complexity class in computational complexity theory. The problems in this complexity class are defined by having the following two properties:
Chain-complete partial order         
POSET COMPLETION
Chain complete; Chain completeness
In mathematics, specifically order theory, a partially ordered set is chain-complete if every chain in it has a least upper bound. It is ω-complete when every increasing sequence of elements (a type of countable chain) has a least upper bound; the same notion can be extended to other cardinalities of chains..
NP-complete         
  • Levin]] proved that each easy-to-verify problem can be solved as fast as SAT, which is hence NP-complete.
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete, and in general, not every problem in P or NP is NP-complete)
  • reductions]] typically used to prove their NP-completeness
COMPLEXITY CLASS
NP-complete problem; NP-complete problems; NP complete; NP completeness; NP-C; Np complete; Np-complete; NP-complete language; Np-complete problem; NP-Completeness; Np completeness; Non-deterministic polynomial-time complete; NP-Complete; Nondeterministic Polynomial Complete; Non polynomial complete; Np-Complete; NP-complete; NP-incomplete
<complexity> (NPC, Nondeterministic Polynomial time complete) A set or property of computational decision problems which is a subset of NP (i.e. can be solved by a nondeterministic Turing Machine in polynomial time), with the additional property that it is also NP-hard. Thus a solution for one NP-complete problem would solve all problems in NP. Many (but not all) naturally arising problems in class NP are in fact NP-complete. There is always a polynomial-time algorithm for transforming an instance of any NP-complete problem into an instance of any other NP-complete problem. So if you could solve one you could solve any other by transforming it to the solved one. The first problem ever shown to be NP-complete was the satisfiability problem. Another example is {Hamilton's problem}. See also computational complexity, halting problem, Co-NP, NP-hard. http://fi-www.arc.nasa.gov/fia/projects/bayes-group/group/NP/. [Other examples?] (1995-04-10)
Theory (mathematical logic)         
SET OF SENTENCES IN A FORMAL LANGUAGE
First-order theory; Theory (model theory); Logical theory; Theory (logic); Supertheory; Subtheory; Logic theory; Deductive theory; Subtheories
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element \phi\in T of a deductively closed theory T is then called a theorem of the theory.
Complete androgen insensitivity syndrome         
  • Bilateral inguinal hernia. CAIS is not usually suspected until after puberty unless an inguinal hernia presents.<ref name="2006 borisa 48" />
  • Persons with a complete androgen insensitivity have a typical female external phenotype, despite having a 46,XY karyotype.<ref name="1976 simpson" /><ref name="2000 gilbert" />
  • Histopathology of testicular tissue showing immature germ cells and spermatagonia with decreased tubular diameter. Scattered groups of Leydig cells appearing immature.<ref name="2009 nichols 91" />
  • Vaginal expander ZSI 200 NS
  • Vaginal length in 8 women with CAIS before and after dilation therapy as first line treatment. The normal reference range (shaded) is derived from 20 control women. Duration and extent of therapy varied; the median time to completion of treatment was 5.2 months, and the median number of 30-minute dilations per week was 5.<ref name="2007 ismail-pratt 22" />
  • ZSI 200 NS vaginal expander stretching the female vagina
INTERSEX CONDITION THAT RESULTS IN A PHENOTYPIC FEMALE
Complete Androgen Insensitivity Syndrome; Complete androgen insensitivity; Total androgen insensitivity syndrome; Complete AIS; Goldberg-Maxwell syndrome
Complete androgen insensitivity syndrome (CAIS) is an AIS condition that results in the complete inability of the cell to respond to androgens. As such, the insensitivity to androgens is only clinically significant when it occurs in individuals who are exposed to significant amounts of testosterone at some point in their lives.

Википедия

Complete theory

In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence φ , {\displaystyle \varphi ,} the theory T {\displaystyle T} contains the sentence or its negation but not both (that is, either T φ {\displaystyle T\vdash \varphi } or T ¬ φ {\displaystyle T\vdash \neg \varphi } ). Recursively axiomatizable first-order theories that are consistent and rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's first incompleteness theorem.

This sense of complete is distinct from the notion of a complete logic, which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness.

Complete theories are closed under a number of conditions internally modelling the T-schema:

  • For a set of formulas S {\displaystyle S} : A B S {\displaystyle A\land B\in S} if and only if A S {\displaystyle A\in S} and B S {\displaystyle B\in S} ,
  • For a set of formulas S {\displaystyle S} : A B S {\displaystyle A\lor B\in S} if and only if A S {\displaystyle A\in S} or B S {\displaystyle B\in S} .

Maximal consistent sets are a fundamental tool in the model theory of classical logic and modal logic. Their existence in a given case is usually a straightforward consequence of Zorn's lemma, based on the idea that a contradiction involves use of only finitely many premises. In the case of modal logics, the collection of maximal consistent sets extending a theory T (closed under the necessitation rule) can be given the structure of a model of T, called the canonical model.